FCN (Fully Convolutional Network):ディープラーニングによるSemantic Segmentation手法

一般物体検出の歴史からちょっと脇道に逸れて、ディープラーニングによるSemantic Segmentationについて勉強する。

Semantic Segmentation

画像の領域を分割するタスクをSegmentation(領域分割)と呼び、Semantic Segmentationは「何が写っているか」で画像領域を分割するタスクのことを指す。
画像を物体領域単位で分類する物体認識や物体検出に対して、Semantic Segmentationは画像をpixel単位でどのクラスに属するか分類する。そのためPixel-labelingとも呼ばれる。

もちろんディープラーニング以前から様々な手法が提案されている。
https://news.mynavi.jp/article/cv_future-35/
https://news.mynavi.jp/article/cv_future-36/


スポンサーリンク


ディープラーニングによるSemantic Segmentationの概要については、2年前のPreferred Networksのセミナー動画が分かりやすい↓



スライドはこちら

一般物体認識を行うニューラルネットワークでは、入力ユニット数が入力画像のサイズ、出力ユニット数は分類するクラス数だったが、Semantic Segmentationでは出力ユニット数は画像サイズ×分類クラス数となる。(入力ユニット数は同様に画像サイズ)

pixelごとにラベル付けされた教師データを与えて学習することで、入力画像の各pixelがどのクラスに分類されるかの確率を出力できるようになる。

まずはSemantic Segmentationにディープラーニングを使った最初の手法 FCN (Fully Convolutional Network)から勉強しよう。

FCN (Fully Convolutional Network)

FCN (Fully Convolutional Network)は、CVPR 2015, PAMI 2016で発表された Fully Convolutional Networks for Semantic Segmentationで提案されたSemantic Segmentation手法。



公式でCaffeによる実装も公開されている↓
https://github.com/shelhamer/fcn.berkeleyvision.org

FCNの大きな特長は、全結合層を持たず、ネットワークが畳み込み層のみで構成されていること。(だからFully Convolutional Networkと呼ばれる)

一般物体認識用のCNNをSemantic Segmentation用に改良する

FCNでは、一般物体認識の畳み込みニューラルネットワーク(実装例ではVGG-16)の全結合層を1×1の畳み込み層に置き換えている。(実装例では、特徴抽出には一般物体認識向けにImageNetで学習したVGG-16の畳み込み層を流用してfine-tuningしている)

全結合層では、全pixelに対して接続しているノードごとに重みをかける処理を行っていた。これはつまり、ノードの数だけ1×1の畳み込みを行う処理と同等である。

全結合層を無くすことで、従来の畳み込みニューラルネットワークのように入力画像のサイズを固定する制約がなくなった。また、全結合層を畳み込み層に置き換えると、クラス分類の結果がヒートマップとして出力されるようになる。

特徴マップのサイズはMaxプーリングを経て小さくなっているため、入力画像H×Wに対して特徴マップのサイズはH/32×W/32になっている。


スポンサーリンク

アップサンプリング

そこで、小さくなった特徴マップを入力画像と同サイズにアップサンプリングしてpixel単位のクラス分類を行う。

逆畳み込み(Deconvolution)

アップサンプリングには逆畳み込み(Deconvolution)という処理を施す。
逆畳み込みと呼ばれているが、畳み込み(convolution)の逆プロセスというわけではない。そのため、誤解を生まないようup convolutionとかtransposed convolution(転置畳み込み?)などとも呼ばれる。

逆畳み込みのパラメータは畳み込みと似ており、kernel size, padding, strideにそれぞれpixel数を指定する。

逆畳み込みで実際に行われるのは、以下のように特徴マップを拡大してから畳み込む処理。

  1. 特徴マップの各pixelをstrideで指定したpixel数ずつ空けて配置し
  2. kernel size-1だけ特徴マップの周囲に余白を取り
  3. paddingで指定されたpixel数だけ余白を削り
  4. 畳み込み処理を行う

こちらのgifで具体的に見てみよう。(図中の青が入力、緑が出力)

kernel size=3, padding=0, stride=0の時の逆畳み込み

No padding, no strides, transposed

kernel size=3, padding=0, stride=1の時の逆畳み込み

No padding, strides, transposed

kernel size=3, padding=1, stride=1の時の逆畳み込み

Padding, strides, transposed

各pooling層の特徴マップを足し合わせる

特徴マップをアップサンプリングで入力画像と同サイズに拡大するだけではsemantic segmentationの結果は物体の境界がぼやけたものとなる。
そこで、特徴抽出の最終層だけでなく、途中のpooling層で出力される大きいサイズの特徴マップも活用する。特徴マップのサイズは各層で異なるので、最終層の特徴マップから順にアップサンプリングで前の層と同サイズに拡大し、チャンネルごとに足し算する。

以下の図は、VGG-16に5つあるpooling層の内、3~5番目の特徴マップを利用する例。

そして、足し算後の特徴マップに対して1×1の畳み込み処理を行う。
途中の層で出力されるサイズの大きい特徴マップを利用することで、物体の詳細な情報を捉えたsemantic segmentationが可能となる。(なんかSSDにも似てるな)

全体平均pooling

FCNの出力層の直前には全体平均poolingが導入されている。これにより、特徴マップの各チャンネルが特定の物体クラスを表すようになる。

サンプルコード

簡単に試せるサンプルコードを探してみたんだけど、データセットの読み込み回りでエラーになるコードが多くてしんどかった。(FCNは入力画像サイズが固定じゃなくなったとはいえ、どんなpixel数の画像でもOKというわけではなく、縦横がアップサンプリング層での拡大率の倍数である必要はある)

やっとシンプルなPyTorch実装のサンプルを見つけた↓(Readmeは中国語だけど)
https://github.com/bat67/pytorch-FCN-easiest-demo

次はSegNetを勉強しようか。


ディープラーニングによるSemantic Segmentationアルゴリズムまとめ
これまで勉強したディープラーニングによるSemantic Segmentation手法のアルゴリズム一覧。


スポンサーリンク

関連記事

Verilog HDL
cvui:OpenCVのための軽量GUIライブラリ
ブラウザ操作自動化ツール『Selenium』を試す
Mitsuba 3:オープンソースの研究向けレンダラ
Geogram:C++の3D幾何アルゴリズムライブラリ
Webスクレイピングの勉強会に行ってきた
Regard3D:オープンソースのStructure from Motionツール
Unity Scriptコーディング→Unreal Engine Scriptコーディング
AnacondaとTensorFlowをインストールしてVisual Studio 2015で使う
Mitsuba 2:オープンソースの物理ベースレンダラ
Javaで作られたオープンソースの3DCGレンダラ『Sunflow』
OpenAR:OpenCVベースのマーカーARライブラリ
OpenCV 3.1のsfmモジュールのビルド再び
Mayaのプラグイン開発
OpenCVでカメラ画像から自己位置認識 (Visual Odometry)
CGAN (Conditional GAN):条件付き敵対的生成ネットワーク
Raspberry PiのGPIOを操作するPythonライブラリ『RPi.GPIO』の使い方
Kubric:機械学習用アノテーション付き動画生成パイプライン
ManimML:機械学習の概念を視覚的に説明するためのライブラリ
Model View Controller
Konashiを買った
機械学習のオープンソースソフトウェアフォーラム『mloss(machine learning ope...
Super Resolution:OpenCVの超解像処理モジュール
Deep Learningとその他の機械学習手法の性能比較
UnityでTweenアニメーションを実装できる3種類の無料Asset
OpenCVの超解像(SuperResolution)モジュールを試す
組み込み向けのWindows OS 『Windows Embedded』
フォトンの放射から格納までを可視化した動画
Netron:機械学習モデルを可視化するツール
iPhone・iPod touchで動作する知育ロボット『ROMO』
PeopleSansPeople:機械学習用の人物データをUnityで生成する
MPFB2:Blenderの人体モデリングアドオン
SVM (Support Vector Machine)
WordPress on Windows Azure
OpenCVで顔のランドマークを検出する『Facemark API』
Fast R-CNN:ディープラーニングによる一般物体検出手法
Unity ARKitプラグインサンプルのチュートリアルを読む
3D復元技術の情報リンク集
OpenCVの三角測量関数『cv::triangulatepoints』
Unityからkonashiをコントロールする
ツールの補助で効率的に研究論文を読む
PythonでBlenderのAdd-on開発

コメント