Mitsuba 2:オープンソースの物理ベースレンダラ

5年前にオープンソースの物理ベースレンダラ「Mitsuba」でちょっと遊んでみたことがあった↓



Siggraph Asia 2019Mitsuba 2が発表されたらしい↓

Mitsuba 2: A Retargetable Forward and Inverse Renderer



現代のレンダリングシステムは、増大し続ける様々な要求に直面しています:
写実性を追求するための物理ベーステクニックでは、スペクトル構成や偏光など光の複雑な特性をますます考慮しなければなりません。
レンダリング時間を短縮するためのベクトル化レンダラでは、CPU、GPU命令レベルで一貫した並列処理が必要です。
Differentiable Rendering(微分可能なレンダリング)アルゴリズムでは、目的関数を最適化するためにシミュレーションの微分値を伝播させる必要があります。(例:参照画像からシーンを再構築するなど)

これらの多様なユースケースに対応するのは困難であり、多くの専用システムが別々に開発されてきました。困難な理由は、これらの複雑な機能を既存のレンダラーに後付けしようとするとエラーが発生したり、基本データ構造、コンポーネント間のインターフェイス、その実装(つまり全て)に侵入的変換を伴うからです。

そこで、前述した様々な用途に対応可能な汎用的なレンダラ Mituba 2を提案します。
Mitsuba 2は最新のC ++で実装されており、テンプレートメタプログラミングを活用し、型の置き換えやコンポーネント(BSDF、ボリューム、エミッター、レンダリングアルゴリズムなど)の制御フローを計測します。そしてコンパイル時に、算術、データ構造、関数ディスパッチを自動的に変換し、汎用アルゴリズムを手作業による再設計無しでそれぞれに効率的な実装に変換します。
変換可能なのは、色の表現の変更、ライトパスのバンドルで動作する「ワイド」レンダラーの生成、GPUで実行される計算カーネルを作成するジャストインタイムコンパイル、自動微分のフォワード/リバースモードです。これらの変換は連鎖させることができ、 単一の汎用実装からアルゴリズムを派生させてさらに充実させることができます。

Mitsuba 2のバイナリやコード自体はまだ公開されていないみたい。

2020年3月 追記新しい公式ページソースコードドキュメントが公開されたぞ↓

Mitsuba 2



Mitsuba 2は、研究指向のリターゲティング可能なレンダリングシステムで、EnokiライブラリをベースにポータブルC++17で記述されています。EPFL(スイス連邦工科大学)Realistic Graphics Labが開発しています。

Mitsuba 2は、色の扱い(RGB、スペクトル、モノクロ)、ベクトル化(scalar, SIMD, CUDA)、Differentiable Rendering(微分可能なレンダリング)など、様々な形態でコンパイルできます。

Mitsuba 2は、小さなコアライブラリセットと、マテリアルと光源、レンダリングアルゴリズムまで幅広く実装した様々なプラグインで構成されています。Mitsuba 2は、以前のバージョンMitsuba 0.6のシーンとの互換性を維持するよう努めています。

以前のMitsubaはバージョン0.6という扱いなのね。
ソースコードはGitHubにある↓
https://github.com/mitsuba-renderer/mitsuba2

ドキュメントはこちら
https://mitsuba2.readthedocs.io/en/latest/src/getting_started/intro/

Mitsuba 0.6との違いのページを読むと理解が早いかもしれん。
Pythonバインディングもあり、PyTorchと組み合わせることもできるみたい。
differentiable rendering (微分可能レンダリング)で早く遊びたいぞ。


Mitsuba 2のプロジェクトページが公開された直後に皆さん反応されていてすごいですね↓
https://qiita.com/syoyo/items/1afb885092d1768c66f8
http://masafumi.cocolog-nifty.com/masafumis_diary/2019/09/post-1677e3.html

追記:Siggraph Asia 2019のセッション動画が公開された↓



だいぶレンダラのパラダイムも変わってきたな。CGもあらゆるプロセスがDifferentiable(微分可能)になっていく感じがする。
Siggraph Asia 2019ではDifferentiable Renderingというセッションが設けられているみたい。

追記:BlenderからMitsubaフォーマットのシーンファイルをエクスポートするアドオンもある↓

Mitsuba 2 Blender Add-On



BlenderのシーンをMitsuba 2のファイルフォーマットにエクスポートするアドオンです。

個人的に、2019年はCG関連のディープラーニング(というか微分可能)の動向が熱かった。


CGのためのディープラーニング
もう半年前のことですが、昨年12月に東京国際フォーラムで開催されたSiggraph Asia 2018 Tokyoで聴講したCourse CreativeAI:Deep Learning for Graphicsの復習を(今頃)しておこうか...

Kaolin:3Dディープラーニング用のPyTorchライブラリ
NVIDIAから3D系のディープラーニング研究のためのPyTorchライブラリが公開された。まだベータ版だから、これからどんどん充実していくんでしょうね。読み方はカオリンで良いのかな?(なんかかわいい)KaolinKaolinは3Dディープ...


追記:Mitsubaは現在バージョン3が登場しています↓
Mitsuba 3:オープンソースの研究向けレンダラ
オープンソースの研究用レンダラMitsubaのバージョン2が発表されたのが3年ほど前。次のバージョンのMistuba 3が発表されました↓Mitsuba 3: A Retargetable Forward and Inverse Rende...

関連記事

openMVG:複数視点画像から3次元形状を復元するライブラリ

CycleGAN:ドメイン関係を学習した画像変換

書籍『OpenCV 3 プログラミングブック』を購入

HTML5・WebGLベースのグラフィックスエンジン『Goo Engine』

UnityでOpenCVを使うには?

マルコフ連鎖モンテカルロ法

『スター・ウォーズ フォースの覚醒』のVFXブレイクダウン まとめ

PeopleSansPeople:機械学習用の人物データをUnityで生成する

ZBrushトレーニング

ZBrushで仮面ライダーBLACK SUNを作る 頭部~バストの概形

C#で使える遺伝的アルゴリズムライブラリ『GeneticSharp』

物理ベースレンダリングのためのマテリアル設定チートシート

参考になりそうなサイト

ZBrushで仮面ライダー3号を造る 仮面編 リファレンス画像の表示

MPC社によるゴジラ(2014)のVFXブレイクダウン

Polyscope:3Dデータ操作用GUIライブラリ

Structure from Motion (多視点画像からの3次元形状復元)

頭蓋骨からの顔復元と進化過程の可視化

オープンソースのプリント基板設計ツール『KiCad』

OpenCV バージョン4がリリースされた!

ZBrushでゴジラ2001を作ってみる 身体のアタリを作る

UnityでARKit2.0

畳み込みニューラルネットワーク (CNN: Convolutional Neural Network...

PythonでBlenderのAdd-on開発

WordPressのサーバ引っ越し方法を考える

ラクガキの立体化 分割ラインの変更・バランス調整

OpenCV 3.1から追加されたSfMモジュール

OANDAのfxTrade API

ゴジラ(2014)のディティール制作の舞台裏

Stanford Bunny

ZBrushでカスタムUIを設定する

スクラッチで既存のキャラクターを立体化したい

自前Shaderの件 解決しました

ポリ男からMetaHumanを作る

LuxCoreRender:オープンソースの物理ベースレンダラ

AmazonEC2のインスタンスをt1.microからt2.microへ移行する

Mayaでリアルな布の質感を作るチュートリアル

イタリアの自動車ブランドFiatとゴジラがコラボしたCMのメイキング

Mask R-CNN:ディープラーニングによる一般物体検出・Instance Segmentatio...

動的なメモリの扱い

OpenMayaのPhongShaderクラス

ZBrush 2018での作業環境を整える

コメント