openMVGをWindows10 Visual Studio 2015環境でビルドする

Windows環境でOpenCVのsfmモジュールをビルドするのはえらい面倒だったので、変にOpenCVにこだわるのはやめようと思う。



以前見つけたopenMVGをビルドしてみる。
複数視点画像から3次元形状を復元するライブラリ『openMVG』
最近、この手の2D→3D復元系のライブラリを色々と調べている。何となく、自分で3D復元ツールを作ってみたくてね。この間のOpenGVは複数画像からカメラ(視点)の3次元位置・姿勢を推定するライブラリだった。↓こっちのopenMVG...


openMVGの公式ドキュメントによると、openMVGは他の依存ライブラリを別途ビルドする必要がなく、openMVGのリポジトリ一式だけでビルドできるようだ。(cereal, glfw, osi_clpdependenciesディレクトリに入れておく必要がありますが)

openMVG documentation!

依存関係

openMVGはスタンドアローンのディストリビューションです。使用するにあたって、追加で依存ライブラリ群をインストールする必要はありません。Linux環境では、ローカルのpng, zlib, jpegライブラリを利用することもできます。

オプションで外部のライブラリとリンクしたビルドもできるようだけど、まずはopenMVG単体でビルドして遊んでみることにする。(ちょっと欲を出して自前でOpenCVやら何やらも含めてビルドしようとしたらエラー地獄にはまったのは内緒)

CMake GUIで基本的にデフォルト設定のままで、唯一、サンプルもビルドするように追加で指定してからGenerateですんなりVisual Studio 2015でビルドできた。


スポンサーリンク


まずはサンプルを動かしながら勉強していく。公式ドキュメントのサンプル解説ページを自分用にざっと翻訳。↓

openMVG samples

openMVGは特徴量のチェックの実装に強くフォーカスしています。そのため、主要な特徴量を利用するサンプルとして(コードの使い方を知る手助けとなるような)ユニットテストを提供しています。

サンプルはショーケースやチュートリアルとしてご覧いただけます:

imageData

以下の実装例で使うのための画像ファイル。

features_siftPutativeMatches

このサンプルの内容:

  • SIFT特徴と記述の抽出
  • 特徴のマッチング
  • マッチング結果の表示

features_affine_demo

このサンプルの内容:

  • MSER/MSCR特徴量による領域検出
  • 領域にフィッティングした楕円の表示

features_image_matching

このサンプルの内容:

  • Image_describerインターフェイスを使った特徴・記述の抽出
  • 検出した領域のマッチング
  • 検出した特徴とマッチング処理結果の対応点の表示

features_kvld_filter

このサンプルの内容:

  • K-VLDフィルタによる対応関係の推定 [KVLD12]

features_repeatability

オックスフォード大の画像データベース“Affine Covariant Regions Datasets”を使って、特徴・記述によるマッチングの精度を測定する方法


スポンサーリンク

multiview_robust_homography

このサンプルの内容:

  • マッチングした特徴間のロバストなホモグラフィー推定

multiview_robust_homography_guided

このサンプルの内容:

  • マッチングした特徴間のロバストなホモグラフィー[H]推定
  • 推定したマッチングをH Guided Filterで拡張
  • クエリ画像をリファレンス画像上にワープ

multiview_robust_fundamental

このサンプルの内容:

  • マッチングした特徴間のロバストな基礎行列推定

multiview_robust_fundamental_guided

このサンプルの内容:

  • マッチングした特徴間のロバストな基礎行列[F]推定
  • 推定したマッチングをF Guided Filterで拡張

multiview_robust_essential

このサンプルの内容:

  • マッチングした特徴間のロバストな基本行列[E]推定
  • 対応点の三角測量による3次元構造の算出

multiview_robust_essential_ba

このサンプルの内容:
以下の異なるカメラモデルで、シーンの構造とモーションをbundle_adjustmentで補正する:

  • [X], [f,R|t] (別々のカメラ)での補正
  • [X], [R|t], 共通の[f]での補正
  • [X], [R|t], 共通のBrown–Conrady歪みモデルでの補正

multiview_robust_essential_spherical

このサンプルの内容:

  • 2つの球面パノラマ間のロバストな基本行列[E]推定
  • 対応点から三角測量

exif_Parsing

このサンプルの内容:

  • JPEGファイルのEXIFメタデータのパース

exif_sensorWidthDatabase

このサンプルの内容:

  • カメラセンサーをデータベースと併用する

cameras_undisto_Brown

このサンプルの内容:

  • Brown–Conrady歪みモデルの既知の放射パラメータを用いた画像の歪み補正

本リストの拡充作業への参加に躊躇はいりません。

公式ドキュメントではサンプルが15個あるみたいに書いてあるけど、GitHubのリポジトリ上には14個しかなかったぞ。exif_sensorWidthDatabaseってどこにあるんだ?

PDFのドキュメントも存在するんですね↓

openMVG Documentation | Pierre MOULON & Bruno DUISIT

チュートリアルスライド資料も見つけた↓

OpenMVG Tutorial

部分的にフランス語っぽいですが。。。
この資料によると、openMVGにGUIを付けたプロジェクトRegard3Dというのがあるらしい。何だ面白そうじゃないか。


スポンサーリンク

関連記事

機械学習手法『SVM(Support Vector Machine)』
adskShaderSDK
SONY製のニューラルネットワークライブラリ『NNabla』
フィーリングに基づくタマムシの質感表現
Deep Fluids:流体シミュレーションをディープラーニングで近似する
仮想関数
Mayaのシェーディングノードの区分
オープンソースのプリント基板設計ツール『KiCad』
PythonでBlenderのAdd-on開発
NumSharp:C#で使えるNumPyライクな数値計算ライブラリ
Webサイトのワイヤーフレームが作成できるオンラインツール
Unreal Engineの薄い本
konashiのサンプルコードを動かしてみた
Kinect for Windows V2のプレオーダー開始
書籍『仕事ではじめる機械学習』を読みました
PythonのStructure from Motionライブラリ『OpenSfM』
UnityからROSを利用できる『ROS#』
Deep Learningとその他の機械学習手法の性能比較
Point Cloud Consortiumのセミナー「3D点群の未来」に行ってきたよ
AMIMOTO(PVM版)で作成したインスタンスをAMIMOTO (HVM版)へ移行する
Point Cloud Libraryに動画フォーマットが追加されるらしい
定数
法線マップを用意してCanvas上でShadingするサンプル
Google App EngineでWordPress
uGUI:Unityの新しいGUI作成システム
ディープラーニング
スクラッチで既存のキャラクターを立体化したい
AR (Augmented Reality)とDR (Diminished Reality)
OpenCVの超解像(SuperResolution)モジュールを試す
Visual Studioでユーザー定義のSyntax HighLightを設定する方法
画像からカメラの3次元位置・姿勢を推定するライブラリ『OpenGV』
Mechanizeで要認証Webサイトをスクレイピング
書籍『イラストで学ぶ ディープラーニング』
DCGAN (Deep Convolutional GAN):畳み込みニューラルネットワークによる敵...
Unityで強化学習できる『Unity ML-Agents』
オーバーロードとオーバーライド
Mayaのレンダリング アトリビュート
BlenderのPython環境にPyTorchをインストールする
Javaで作られたオープンソースの3DCGレンダラ『Sunflow』
2D→3D復元技術で使われる用語まとめ
第25回コンピュータビジョン勉強会@関東に行って来た
TeleSculptor:空撮動画からPhotogrammetryするツール

コメント