KelpNet:C#で使える可読性重視のディープラーニングライブラリ

ここ最近、ディープラーニングというか、ニューラルネットワークのお勉強をしてみて、その処理コストが高いため、実装では行列演算として扱われていることを知った。


畳み込みニューラルネットワーク (CNN: Convolutional Neural Network)
例の書籍「ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装」を一通り読み終わりました。「あえてPythonを使わずにUnity C#で実装しながら勉強する」とか言っておきながら、結局途中でコーディン...


行列演算に最適化されたライブラリを使うことで処理の高速化を図っているらしい。(GPUも行列演算得意だしね)

そういうわけで、巷のオープンソースコードからアルゴリズムを勉強するのは、数学(というか行列)に疎いとちょっとしんどかったりする。



そんな数学の苦手な人でもコードを読んで勉強できるよう、春条氏が行列演算を使わずにディープラーニングを実装したライブラリKelpNetを公開している。

KelpNet

KelpNetはC#で実装された深層学習のライブラリです。

特徴

  • 行列演算をライブラリに頼らないため全ソースが可読になっており、どこで何をしているかを全て観測できます
  • KerasやChainerが採用している、関数を積み重ねるように記述するコーディングスタイルを採用しています
  • 並列演算にOpenCLを採用しているため、GPUだけでなくCPUやFPGA等の様々な演算装置で処理を並列化できます

C#で作られているメリット

  • 開発環境の構築が容易で、プログラミング初学者にも学びやすい言語です
  • WindowsFormやUnity等、処理結果を視覚的に表示するための選択肢が豊富です
  • PCや携帯、組み込み機器等、様々なプラットフォームに向けたアプリケーションの開発ができます

このライブラリについて

このライブラリの基幹部分はChainerを参考に実装されています。 その為ほとんどの関数パラメータがChainerと同じになっており、Chainer向けのサンプルを参考に開発することが可能になっています。

License



Unityでの利用も想定されているようなので、ちょっと試してみたいな。

2018年8月 追記:じんべえざめさんがKelpNetを使った学習記事を公開している↓
https://jinbeizame.hateblo.jp/entry/kelpnet_intro
https://jinbeizame.hateblo.jp/entry/kelpnet_xor
https://jinbeizame.hateblo.jp/entry/kelpnet_opencl_gpu
https://jinbeizame.hateblo.jp/entry/kelpnet_cnn
https://jinbeizame.hateblo.jp/entry/kelpnet_vgg
https://jinbeizame.hateblo.jp/entry/kelpnet_transfer

2019年3月 追記:KelpNetをUnityで使うQiita記事↓
https://qiita.com/yanosen_jp/items/4ca7d16908f0956ef7d8

関連記事

FacebookがDeep learningツールの一部をオ...

Accord.NET Framework:C#で使える機械学...

OpenCV バージョン4がリリースされた!

Model View Controller

Twitter APIのPythonラッパー『python-...

Unite 2014の動画

機械学習のオープンソースソフトウェアフォーラム『mloss(...

BlenderProc:Blenderで機械学習用の画像デー...

OpenCV 3.1のsfmモジュールを試す

OpenCV

Google App Engine上のWordPressでF...

クラスの基本

uvでWindows11のPython環境を管理する

法線マップを用意してCanvas上でShadingするサンプ...

C++始めようと思うんだ

UnityのAR FoundationでARKit 3

Transformer Explainer:テキスト生成モデ...

1枚の画像からマテリアルを作成できる無料ツール『Materi...

GeoGebra:無料で使える数学アプリ

SegNet:ディープラーニングによるSemantic Se...

Photogrammetry (写真測量法)

Caffe:読みやすくて高速なディープラーニングのフレームワ...

YOLO (You Only Look Once):ディープ...

AR (Augmented Reality)とDR (Dim...

Facebookの顔認証技術『DeepFace』

Maya LTのQuick Rigを試す

スクレイピング

UnityのMonoBehaviourクラスをシングルトン化...

ブログが1日ダウンしてました

WordPressプラグインによるサイトマップの自動生成

AMIMOTO(PVM版)で作成したインスタンスをAMIMO...

BlenderのPython環境にPyTorchをインストー...

Iridescence:プロトタイピング向け軽量3D可視化ラ...

畳み込みニューラルネットワーク (CNN: Convolut...

NumSharp:C#で使えるNumPyライクな数値計算ライ...

PyTorch3D:3Dコンピュータービジョンライブラリ

ニューラルネットワークで画像分類

株式会社ヘキサドライブの研究室ページ

OpenGV:画像からカメラの3次元位置・姿勢を推定するライ...

Cartographer:オープンソースのSLAMライブラリ

UnityからROSを利用できる『ROS#』

OpenCVの顔検出過程を可視化した動画

コメント