OpenMVSのサンプルを動かしてみる

この前見つけたOpenMVSをビルドしてみようと思ってドキュメント見たら、すでにサンプルをWindows用にビルドしたバイナリが配布されているではないか!



公式ドキュメントのUsageページの内容も、配布されているopenMVS_sampleを使えばできそうな感じ。

ただ、ドキュメントがやや古いのか、書いてある実行ファイルの名称が配布されているものとちょっと食い違っているみたい。
たぶん、ドキュメントで”openMVG_main_openMVG2openMVS“って書かれているのは、現在のサンプルの中にある”InterfaceOpenMVG“のこと。ソースコードのInterfaceOpenMVG.cppの中身をちょっと見てみると、ドキュメント記載の”openMVG_main_openMVG2openMVS“と同じ引数を受け取りそうな感じ。

openMVGでSFMデータ(sfm_data.bin)を作成する

とりあえず、OpenMVSに食わせるためのsfm_data.binをopenMVGでちゃちゃっと生成してしまう。この前ビルドしたopenMVGのSfM toolsを使う。



OpenMVSの使い方の例に合わせてSceaux Castleの画像セットを使用する。

Sceaux Castle画像セットを入力として以下のツールを順に実行すると、最終的にsfm_data.binが出力される。コマンドライン引数はそれぞれのドキュメント参照。

  1. openMVG_main_SfMInit_ImageListing:画像リストの作成
  2. openMVG_main_ComputeFeatures:画像特徴の検出・記述
  3. openMVG_main_ComputeMatches:画像の対応関係の計算
  4. openMVG_main_IncrementalSfM:3次元再構築(Structure from Motion)

sfm_data.binと一緒にいくつか.plyファイルも出力される。この.plyファイルをMeshLabで開けば3次元再構築の結果を確認できる。

で、出力されたsfm_data.binを使ってOpenMVSのMulti-View Stereoによる密な点群の復元を試すわけだけど、まずは現在配布されているOpenMVSの最新のサンプルの構成に合わせて、やや古いOpenMVS公式のドキュメントの記述を読み換えながら訳してみる。


スポンサーリンク

OpenMVSモジュールの使い方

次は、利用可能なモジュールの使い方の説明です。
今回は、OpenMVGのパイプラインを使い、Sceaux Castle画像セットからカメラ位置と疎な点群の復元を行いました。
ここで示すアウトプットは、全てOpenMVSのパイプラインで自動的に生成したものであり、手作業による調整は一切行っていない結果であることに注意してください。
完全なサンプル(モジュール用のWindows x64バイナリを含む)はOpenMVS_Sampleにあります。

OpenMVSのバイナリは、全てコマンドライン引数をサポートしています。引数の詳細については、引数無し、または-hコマンドで実行すると表示されます。
@FlachyJoe氏がOpenMVGとOpenMVSの連携プロセスを自動化した、コマンド1つで実行できるscriptを提供しています。
以下のコマンドを実行すれば同様の結果が得られるはずです:

python MvgMvs_Pipeline.py


スポンサーリンク

OpenMVGのシーンを変換する

シーンの再構築後、OpenMVGはデフォルトでカメラ位置と疎な点群情報の入ったsfm_data.binファイルを生成します。
エクスポーターツールを以下コマンドで実行すれば、このファイルをOpenMVSのプロジェクトファイルscene.mvsへ変換できます。

InterfaceOpenMVG -i sfm_data.bin -o scene.mvs

OpenMVGが古い.jsonアスキー形式のファイルを使っている場合は、以下のように実行してください。

InterfaceOpenMVG -i scene.json -o scene.mvs

ここまでのステップで得られた疎な点群は以下の画像のようになるはずです:

Sparse

密な点群の再構築(オプション)

シーンに欠けている部分があっても、dense reconstruction(密な再構築)モジュールを使って密な点群を推定すれば復元することができます。

DensifyPointCloud scene.mvs

得られた高密度の点群は以下の画像のようになります(頂点の色は可視化のためのおおよそのものであり、以降の処理には影響しないことにに注意):

scene_dense

ラフなメッシュの再構築

ここまでのステップで得られた疎、密な点群をmesh reconstruction(メッシュの再構築)モジュールの入力として使うことができます。

ReconstructMesh scene_dense.mvs

mesh reconstructionモジュールを実行して得られるメッシュ:

dense_mesh

メッシュのリファイン(オプション)

疎、密な点群から得られたメッシュには、まだディティールや大きな欠落部分をリファインできる余地があります。
以下のコマンドで、疎な点群から得たラフなメッシュのリファインを行ってみます:

RefineMesh scene_mesh.mvs

リファイン前と後:

scene_mesh

scene_mesh_refine

メッシュにテクスチャを貼る

ここまでのステップで得られたメッシュをmesh texturing(メッシュにテクスチャを貼る)モジュールの入力として使います。

TextureMesh scene_dense_mesh.mvs

メッシュにテクスチャを貼った状態:

scene_dense_mesh_texture

openMVG_main_openMVG2openMVS“を”InterfaceOpenMVG“と読み替えるだけでちゃんと動いたぞ。さらにOopenMVS_sampleにはopenMVGだけでなく、VisualSFMのファイルを変換するInterfaceVisualSFMも入っているので、VisualSFMで疎な点群の復元まで終えたデータからOpenMVSで密な点群の復元ができるわけだな。

まあ、もちろんPMVSCMVSとかCMPMVSでも良いんですが。


スポンサーリンク

関連記事

CGのためのディープラーニング
ポイントクラウドコンソーシアム
AfterEffectsプラグイン開発
顔画像処理技術の過去の研究
OpenCVの三角測量関数『cv::triangulatepoints』
書籍『ゼロから作るDeep Learning』で自分なりに学ぶ
HD画質の無駄遣い その2
『手を動かしながら学ぶエンジニアのためのデータサイエンス』ハンズオンセミナーに行ってきた
Raspberry Piでセンサーの常時稼働を検討する
Faster R-CNN:ディープラーニングによる一般物体検出手法
科学技術計算向けスクリプト言語『Julia』
UnityのAR FoundationでARKit 3
U-Net:ディープラーニングによるSemantic Segmentation手法
PythonのStructure from Motionライブラリ『OpenSfM』
.NETで使えるTensorFlowライクなニューラルネットワークライブラリ『NeuralNetwo...
python-twitterで自分のお気に入りを取得する
ZScript
Mean Stack開発の最初の一歩
オープンソースの取引プラットフォーム
Google XML Sitemap Generatorプラグインを3.4.1へダウングレード
OpenCVでカメラ画像から自己位置認識 (Visual Odometry)
自前のShaderがおかしい件
WordPress on Google App Engineを1週間運用してみて
クリエイターのための機械学習ツール『Runway ML』
OpenCVの超解像処理モジュール『Super Resolution』
ポリゴン用各種イテレータと関数セット
fSpy:1枚の写真からカメラパラメーターを割り出すツール
C++の機械学習ライブラリ『Dlib』
MeshroomでPhotogrammetry
Russian3DScannerのトポロジー転送ツール『WrapX』
画像からカメラの3次元位置・姿勢を推定するライブラリ『OpenGV』
顔検出・認識のAPI・ライブラリ・ソフトウェアのリスト
Konashiを買った
C++始めようと思うんだ
ブラウザ操作自動化ツール『Selenium』を試す
ブログが1日ダウンしてました
SSII2014 チュートリアル講演会の資料
HD画質の無駄遣い
立体視を試してみた
海外ドラマのChromaKey
書籍『イラストで学ぶ ディープラーニング』
続・ディープラーニングの資料

コメント