GAN, DCGANに引き続きGAN手法のお勉強。


次はCGAN (Conditional GAN)を勉強しよう。
日本語で言うと「条件付き敵対的生成ネットワーク」といったところでしょうか。
CGAN (Conditional GAN)
CGAN (Conditional GAN)は2014年にarXivで公開された論文 Conditional Generative Adversarial Netsで提案された生成手法。arXivで公開されただけで、学会発表はしていないようです。中身も割とあっさりした論文。学会発表されていない論文が後に引用される時代か。
CGANは以下の図のように、Generator, DiscriminatorによるGANの基本構造を踏襲しつつ、条件を与えられるように拡張されている↓
G:Generator
D:Discriminatorz:ノイズベクトル
y:条件ベクトル
x:本物のデータ (学習データ)
G(z):Generatorが生成した偽のデータ
オリジナルのGANとCGANの大きな違いは、Generatorの入力にノイズベクトルだけでなく、条件ベクトルも与えている点。それに伴い、Discriminatorも条件ベクトルに相当する条件データを入力できるよう改良されている。
CGANの目的関数
そのため、CGANの目的関数は以下の式のように、GANの目的関数に条件ベクトルyを加えた形になる↓
ノイズだけでなく、条件の情報を入力することで、CGANは特定の条件のデータを生成できるようになっている。ここで「条件」として使用する情報はほとんどの場合クラスラベルや文章などですが、他にもあらゆる情報を想定できるそうです。(Pix2Pixは条件に画像を使ったCGANです)
Generatorの入力
通常のGANのGeneratorの入力をn桁のノイズベクトルだとすると、CGANの入力は、n桁のノイズベクトルに条件ベクトル分の桁を結合したベクトルとなる。
つまり、ノイズベクトルの要素が100個、条件ベクトルの要素が10個だとすると、110個の要素を持つベクトルがGeneratorの入力となる。
条件ベクトルはone-hot表現のベクトルとして与える。
例えば0~9までの数字画像を生成する場合、4という数字を表す条件ベクトルは [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]となる。
Discriminatorの入力
通常、GANのDiscriminatorの入力はwidth × heightの実データ(画像)または生成データ(画像)だけだが、CGANではデータ生成時の条件も入力する。
しかし、実装上DiscriminatorにはGeneratorのように条件ベクトルをそのまま入力することができないため、条件をwidth × heightのデータ(画像)として入力する。これは、Generatorに入力するone-hot表現の条件ベクトルの各要素をそれぞれ1枚の条件画像に変換するということ。(条件数分チャンネルを持った1枚の画像とも言えますが)
例えば、0~9までの数字を条件とする場合は10枚の条件画像を用意することになる。この場合、4という数字に相当する5枚目の条件画像のピクセル値は全て1で埋める。
CGANの学習
CGANも通常のGANの考え方に則り、GeneratorとDiscriminatorを競わせるように学習する。
CGANの学習ステップは通常のGANとほぼ同様なので割愛。
MNISTデータセットを用いた実験
MNISTデータセットを使い、数字のラベルを条件として使用した実験結果↓
Generatorの入力となる条件ベクトルが数字の指定、ノイズベクトルが同じ数字のバリエーションを生成するパラメータとして機能している。
ちなみに、CGANもDCGANのようにネットワークを畳み込み層で構成すると、DCGANと同様に高品質な画像を特定の条件で生成できるようになる。これはCDCGAN (Conditional DCGAN)と呼ばれたりもする。ネットでCGANの実装例を探すと、むしろCDCGANの実装例の方が多い気がする。
この他、論文ではFlickrの画像データを用いてタグ情報を条件に使用した実験も行っている。
CGANの実装
これをフォークして自分で実装を試してみてるけど、まだ実装途中です。。。
https://github.com/NegativeMind/Pytorch-conditional-GANs
PyTorchでの実装例はCDCGANのサンプルばかりで、純粋なCGANの良い例が見つけられない。。。
次はいよいよPix2Pix。


Pix2Pix以降はこれに従って順に勉強していこう↓
関連記事
OpenCV 3.1から追加されたSfMモジュール
海外ドラマのChromaKey
Kaolin:3Dディープラーニング用のPyTorchライブ...
OpenGV:画像からカメラの3次元位置・姿勢を推定するライ...
Point Cloud Libraryに動画フォーマットが追...
Alice Vision:オープンソースのPhotogram...
Physics Forests:機械学習で流体シミュレーショ...
Theia:オープンソースのStructure from M...
Deep Fluids:流体シミュレーションをディープラーニ...
SSD (Single Shot Multibox Dete...
機械学習について最近知った情報
Structure from Motion (多視点画像から...
Faster R-CNN:ディープラーニングによる一般物体検...
KelpNet:C#で使える可読性重視のディープラーニングラ...
池袋パルコで3Dのバーチャルフィッティング『ウェアラブル ク...
画像生成AI Stable Diffusionで遊ぶ
OpenMVS:Multi-View Stereoによる3次...
Open3D:3Dデータ処理ライブラリ
Kinect for Windows v2の日本価格決定
顔追跡による擬似3D表示『Dynamic Perspecti...
OpenCVで動画の手ぶれ補正
iPhoneで3D写真が撮れるアプリ『seene』
OpenCVで平均顔を作るチュートリアル
書籍『3次元コンピュータビジョン計算ハンドブック』を購入
UnityユーザーがUnreal Engineの使い方を学ぶ...
TensorFlowでCGを微分できる『TensorFlow...
SDカードサイズのコンピューター『Intel Edison』
SegNet:ディープラーニングによるSemantic Se...
書籍『仕事ではじめる機械学習』を読みました
Zibra Liquids:Unity向け流体シミュレーショ...
Windows10でPyTorchをインストールしてVSCo...
機械学習に役立つPythonライブラリ一覧
書籍『OpenCV 3 プログラミングブック』を購入
CGのためのディープラーニング
GAN (Generative Adversarial Ne...
TensorSpace.js:ニューラルネットワークの構造を...
ArUco:OpenCVベースのコンパクトなARライブラリ
MLDemos:機械学習について理解するための可視化ツール
ポイントクラウドコンソーシアム
OpenCV
ベイズ推定とグラフィカルモデル
3D Gaussian Splatting:リアルタイム描画...




コメント