もう1年以上前になりますが、書籍「イラストで学ぶ ディープラーニング」を購入して少しずつ読み進めていたのです。↓
ところが、読み進めている途中で壁にぶち当たりました。この書籍、途中からどんどん数式率が上がって行き、あんまりイラストで教えてくれなくなるんですよ(笑)
数式が苦手だから「イラストで学ぶ」に期待していたのですが、考えが甘かったようです。
載っているサンプルコードは各種Deep Learningライブラリの使い方なので、肝心の仕組みは当然隠蔽されていて、そこから仕組みを理解するのは難しい。(ライブラリの使い方を覚えられる分実践的なんだけどね)
なので、実装しながら仕組みを理解していく方針に切り替えることにした。
ということで、こちらの書籍に頼ることにしました↓ (すぐ書籍買っちゃう)
Pythonのサンプルコードと、書籍の正誤表はGitHubにある↓
https://github.com/oreilly-japan/deep-learning-from-scratch
https://github.com/oreilly-japan/deep-learning-from-scratch/wiki/errata
これでディープラーニングを作れる(笑)
書籍のサンプルコードはPythonですが、そこは慣れたUnity(というかC#)環境に置き換えて学ぼうと思い、PythonのNumPyに代わる数値計算ライブラリを探していたのでした。
で、Math.NET Numerics導入後に少し調べたら、似た発想の人がいた↓
http://tnakamura.hatenablog.com/entry/2016/12/05/perceptron
http://tnakamura.hatenablog.com/entry/2016/12/08/sigmoid-relu-softmax
http://tnakamura.hatenablog.com/entry/2016/12/15/mnist
http://tnakamura.hatenablog.com/entry/2016/12/16/three-layer-neural-network
http://tnakamura.hatenablog.com/entry/2017/01/30/loss-function
http://tnakamura.hatenablog.com/entry/2017/02/08/numerical-differentiation
http://tnakamura.hatenablog.com/entry/2017/02/10/numeric-gradient
http://tnakamura.hatenablog.com/entry/2017/02/15/gradient-descent
http://tnakamura.hatenablog.com/entry/2017/02/20/gradient-simplenet
https://github.com/snaga/DeepLearning_C_Sharp
せっかくなので実装の参考にさせていただこう。Math.NET Numericsの使い方を知るのに良いサンプルだ。
Unity上で動作の仕組みを可視化できたら最高なんだが、そこまで行けるだろうか。
2019年 追記:今ならMath.NET Numericsじゃなくて、このNumSharpを使った方が良いと思う↓
スポンサーリンク
パーセプトロン、ニューラルネットワークのイメージ
書籍とは関係ないけど、パーセプトロン、ニューラルネットワークの働きをビジュアル化するとこんなイメージらしい↓
色んなアルゴリズムをこんな感じで可視化できると理解が捗るだろうなぁ。
スポンサーリンク