.wp-block-jetpack-rating-star span.screen-reader-text { border: 0; clip: rect(1px, 1px, 1px, 1px); clip-path: inset(50%); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; word-wrap: normal; }

サイトアイコン NegativeMindException

CGAN (Conditional GAN):条件付き敵対的生成ネットワーク

GAN, DCGANに引き続きGAN手法のお勉強。


GAN (Generative Adversarial Network):敵対的生成ネットワーク アルゴリズムまとめ
これまで勉強したGAN (Generative Adversarial Network):敵対的生成ネットワーク手法のアルゴリズム一覧。


次はCGAN (Conditional GAN)を勉強しよう。
日本語で言うと「条件付き敵対的生成ネットワーク」といったところでしょうか。

CGAN (Conditional GAN)

CGAN (Conditional GAN)は2014年にarXivで公開された論文 Conditional Generative Adversarial Netsで提案された生成手法。arXivで公開されただけで、学会発表はしていないようです。中身も割とあっさりした論文。学会発表されていない論文が後に引用される時代か。

CGANは以下の図のように、Generator, DiscriminatorによるGANの基本構造を踏襲しつつ、条件を与えられるように拡張されている↓

G:Generator
D:Discriminator
z:ノイズベクトル
y:条件ベクトル
x:本物のデータ (学習データ)
G(z):Generatorが生成した偽のデータ



オリジナルのGANCGANの大きな違いは、Generatorの入力にノイズベクトルだけでなく、条件ベクトルも与えている点。それに伴い、Discriminatorも条件ベクトルに相当する条件データを入力できるよう改良されている。

CGANの目的関数

そのため、CGANの目的関数は以下の式のように、GANの目的関数に条件ベクトルyを加えた形になる↓

ノイズだけでなく、条件の情報を入力することで、CGANは特定の条件のデータを生成できるようになっている。ここで「条件」として使用する情報はほとんどの場合クラスラベルや文章などですが、他にもあらゆる情報を想定できるそうです。(Pix2Pixは条件に画像を使ったCGANです)

Generatorの入力

通常のGANGeneratorの入力をn桁のノイズベクトルだとすると、CGANの入力は、n桁のノイズベクトルに条件ベクトル分の桁を結合したベクトルとなる。
つまり、ノイズベクトルの要素が100個、条件ベクトルの要素が10個だとすると、110個の要素を持つベクトルがGeneratorの入力となる。
条件ベクトルはone-hot表現のベクトルとして与える。
例えば0~9までの数字画像を生成する場合、4という数字を表す条件ベクトルは [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]となる。


スポンサーリンク

Discriminatorの入力

通常、GANDiscriminatorの入力はwidth × heightの実データ(画像)または生成データ(画像)だけだが、CGANではデータ生成時の条件も入力する。
しかし、実装上DiscriminatorにはGeneratorのように条件ベクトルをそのまま入力することができないため、条件をwidth × heightのデータ(画像)として入力する。これは、Generatorに入力するone-hot表現の条件ベクトルの各要素をそれぞれ1枚の条件画像に変換するということ。(条件数分チャンネルを持った1枚の画像とも言えますが)
例えば、0~9までの数字を条件とする場合は10枚の条件画像を用意することになる。この場合、4という数字に相当する5枚目の条件画像のピクセル値は全て1で埋める。

CGANの学習

CGANも通常のGANの考え方に則り、GeneratorDiscriminatorを競わせるように学習する。
CGANの学習ステップは通常のGANとほぼ同様なので割愛。

MNISTデータセットを用いた実験

MNISTデータセットを使い、数字のラベルを条件として使用した実験結果↓

Generatorの入力となる条件ベクトルが数字の指定、ノイズベクトルが同じ数字のバリエーションを生成するパラメータとして機能している。

ちなみに、CGANDCGANのようにネットワークを畳み込み層で構成すると、DCGANと同様に高品質な画像を特定の条件で生成できるようになる。これはCDCGAN (Conditional DCGAN)と呼ばれたりもする。ネットでCGANの実装例を探すと、むしろCDCGANの実装例の方が多い気がする。

この他、論文ではFlickrの画像データを用いてタグ情報を条件に使用した実験も行っている。

CGANの実装

これをフォークして自分で実装を試してみてるけど、まだ実装途中です。。。
https://github.com/NegativeMind/Pytorch-conditional-GANs

PyTorchでの実装例はCDCGANのサンプルばかりで、純粋なCGANの良い例が見つけられない。。。

次はいよいよPix2Pix


GAN (Generative Adversarial Network):敵対的生成ネットワーク アルゴリズムまとめ
これまで勉強したGAN (Generative Adversarial Network):敵対的生成ネットワーク手法のアルゴリズム一覧。


Pix2Pix以降はこれに従って順に勉強していこう↓


スポンサーリンク

関連記事

機械学習での「回帰」とは?

openMVG:複数視点画像から3次元形状を復元するライブラリ

iOSで使えるJetpac社の物体認識SDK『DeepBelief』

Point Cloud Libraryに動画フォーマットが追加されるらしい

LLM Visualization:大規模言語モデルの可視化

動画で学ぶお絵かき講座『sensei』

Cartographer:オープンソースのSLAMライブラリ

OpenCV 3.1から追加されたSfMモジュール

NumSharp:C#で使えるNumPyライクな数値計算ライブラリ

PyTorch3D:3Dコンピュータービジョンライブラリ

書籍『仕事ではじめる機械学習』を読みました

Netron:機械学習モデルを可視化するツール

iPhoneで3D写真が撮れるアプリ『seene』

Kornia:微分可能なコンピュータービジョンライブラリ

OpenCV 3.3.0-RCでsfmモジュールをビルド

書籍『OpenCV 3 プログラミングブック』を購入

Rerun:マルチモーダルデータの可視化アプリとSDK

Physics Forests:機械学習で流体シミュレーションを近似する

SVM (Support Vector Machine)

FreeMoCap Project:オープンソースのマーカーレスモーションキャプチャ

Zibra Liquids:Unity向け流体シミュレーションプラグイン

GAN (Generative Adversarial Networks):敵対的生成ネットワーク

AI英語教材アプリ『abceed』

ドットインストールのWordPress入門レッスン

OpenCV 3.1のsfmモジュールを試す

Qlone:スマホのカメラで3Dスキャンできるアプリ

Paul Debevec

オープンソースの顔認識フレームワーク『OpenBR』

オープンソースの顔の動作解析ツールキット『OpenFace』

Deep Fluids:流体シミュレーションをディープラーニングで近似する

OpenCVで動画の手ぶれ補正

畳み込みニューラルネットワーク (CNN: Convolutional Neural Network...

Unityで強化学習できる『Unity ML-Agents』

Faster R-CNN:ディープラーニングによる一般物体検出手法

手を動かしながら学ぶデータマイニング

Adobeの手振れ補正機能『ワープスタビライザー』の秘密

顔画像処理技術の過去の研究

2D→3D復元技術で使われる用語まとめ

画像生成AI Stable Diffusionで遊ぶ

CNN Explainer:畳み込みニューラルネットワーク可視化ツール

Theia:オープンソースのStructure from Motionライブラリ

写真に3Dオブジェクトを違和感無く合成する『3DPhotoMagic』

モバイルバージョンを終了