NVIDIAから3D系のディープラーニング研究のためのPyTorchライブラリが公開された。
まだベータ版だから、これからどんどん充実していくんでしょうね。読み方はカオリンで良いのかな?(なんかかわいい)
Kaolin
Kaolinは3Dディープラーニングの研究を加速させるためのPyTorchライブラリです。Kaolinは、ディープラーニングシステムで使用できる微分可能な3Dモジュールを効率的な実装で提供します。
Kaolinには一般的な公開3Dデータセットの読み込みと前処理を行ったり、メッシュ、点群、符号付き距離関数、ボクセルグリッドを操作するネイティブ関数があり、無駄な定型コードの記述を最小限に抑えています。Kaolinは、レンダリング、ライティング、シェーディング、view warpingなどの微分可能なグラフィックスモジュールをパッケージ化しています。また、Kaolinは一連の損失関数と評価指標をサポートすることでシームレスな評価を可能とし、3Dの結果をレンダリングする可視化機能も提供します。
最も重視しているのは、最先端の様々な3Dディープラーニングアーキテクチャを集めた包括的なModel Zooをキュレートし、将来の研究活動の出発点に立つ手助けとなることです。
ドキュメントのページがまだ作成されていないのか404だけど。
NVIDIAの公式ブログ↓
https://news.developer.nvidia.com/kaolin-library-research-3d/
https://blogs.nvidia.co.jp/2019/11/27/kaolin-library-research-3d/
Kaolinって名前は造形用粘土のKaolinite(カオリナイト)が由来なのね。
ベータ版の時点で何ができるのか。
機能
現在、(ベータ版)リリースには、メッシュ、ボクセル、符号付き距離関数、点群での3Dディープラーニングのための処理関数が含まれています。
一般的なデータセット(例:ShapeNet, ModelNet, SHRECなど)の読み込みもすぐにサポートされます。また、いくつかの3D変換および変換操作を実装します。
Kaolinは以下のような3Dタスクをサポートします:
- Differentiable rendering (see Neural Mesh Renderer, its PyTorch port, Soft Rasterizer, Differentiable Interpolation-based Renderer, and a modular and extensible abstract DifferentiableRenderer specification).
- Single-image based mesh reconstruction (Pixel2Mesh, GEOMetrics, OccupancyNets, and more…)
- Pointcloud classification and segmentation (PointNet, PoinNet++, DGCNN, …)
- Mesh classification and segmentation (MeshCNN, GCN)
- 3D superresolution on voxel grids (ODM, VoxelUNet, and more…)
- Basic graphics utilities (lighting, shading, etc.)
Model Zoo
Kaolinは、一般的な3Dディープラーニングアーキテクチャのリファレンス実装を含む大規模なModel Zooをキュレーションします。詳しくはこちらでご確認ください。
https://note.com/npaka/m/m85457421b99f
TensorFlowを使うならTensorFlow Graphicsがあるけど、PyTorch派ならKaolinだろうか。

あ、Siggraph 2019で発表されて話題になったMeshCNNのモデルもKaolinに含まれてるんですね。
MeshCNNのコードもPyTorchで実装されてるからまあ、すでに割と手軽ではあるんだけど。
https://github.com/ranahanocka/MeshCNN/
関連記事
OpenVDB:3Dボリュームデータ処理ライブラリ
Unityをレンダラとして活用する
ラクガキの立体化 分割ラインの変更・バランス調整
Unityで学ぶC#
LLM Visualization:大規模言語モデルの可視化
Python for Unity:UnityEditorでP...
Deep Fluids:流体シミュレーションをディープラーニ...
ZBrushでアヴァン・ガメラを作ってみる
ROSの薄い本
Fast R-CNN:ディープラーニングによる一般物体検出手...
ZBrushでゴジラ2001を作ってみる 姿勢の変更
Transformer Explainer:テキスト生成モデ...
Math Inspector:科学計算向けビジュアルプログラ...
OpenCV 3.1から追加されたSfMモジュール
書籍『仕事ではじめる機械学習』を読みました
3D Gaussian Splatting:リアルタイム描画...
MythTV:Linuxでテレビの視聴・録画ができるオープン...
ZBrush4新機能ハイライト 3DCG CAMP 2010
フリーのUV展開ツール Roadkill UV Tool
Blender 2.81でIntel Open Image ...
3Dスキャンしたテクスチャから照明を除去するUnityツール...
ZBrushトレーニング
Texturing & Modeling A Pro...
PythonでMayaのShapeノードプラグインを作る
日本でMakersは普及するだろうか?
映画『アバター:ウェイ・オブ・ウォーター』を観た
OpenCVでiPhone6sのカメラをキャリブレーションす...
ラクガキの立体化 目標設定
Mechanizeで要認証Webサイトをスクレイピング
Google Colaboratoryで遊ぶ準備
ZBrushで仮面ライダー3号を造る 仮面編 リファレンス画...
昔Mayaでモデリングしたモデルをリファインしてみようか
アニゴジ関連情報
OpenAR:OpenCVベースのマーカーARライブラリ
ZBrushでゴジラ2001を作ってみる 身体のSubToo...
SSD (Single Shot Multibox Dete...
WordPressプラグインによるサイトマップの自動生成
OpenCVの顔検出過程を可視化した動画
bpy-renderer:レンダリング用Pythonパッケー...
OpenCV 3.1のsfmモジュールのビルド再び
書籍『The Art of Mystical Beasts』...
CGAN (Conditional GAN):条件付き敵対的...



コメント