Deep Fluids:流体シミュレーションをディープラーニングで近似する

チューリッヒ工科大学(ETH Zurich)、ミュンヘン工科大学、Pixarによるディープラーニングで流体シミュレーションを近似する研究 Deep Fluids: A Generative Network for Parameterized Fluid Simulationsプロジェクトページソースコードが公開されている。

Deep Fluids

本研究では、削減済みのパラメータセットから流体シミュレーションを合成する新しい生成モデルを提案します。畳み込みニューラルネットワークを離散パラメータ化した流体シミュレーションの速度場(velocity fields)で訓練しました。

訓練データの代表的な特徴を学習するディープラーニングアーキテクチャの特性により、本研究の生成モデルは訓練データセットを正確に近似しつつ、中間値をもっともらしく補間することができます。この生成モデルは、全ての時刻で速度場(velocity fields)の無発散(divergence-free)を保証する新しい損失関数を導入することで流体に最適化されています。

本研究ではさらに、複雑なパラメータを削減した空間で扱えること、潜在空間(latent space)で第2のネットワークと統合することでシミュレーションをリアルタイムに実現できることを示します。
本手法では流体の多種多様な挙動をモデル化しているため、高速なシミュレーション構築、異なるパラメータを持つ流体の補間、タイムリサンプリング、潜在空間(latent space)シミュレーション、シミュレーションデータの圧縮などに応用できます。

本手法による速度場の再構築は、同データをCPUで再シミュレーションするよりも最大で700倍高速に生成でき、圧縮率は最大1300倍となります。

5月に開催されるEurographics 2019で発表されるそうです。



ETH Zurichといえば、数年前にRegression Forestベースの流体シミュレーション近似手法Pysics Forestsを発表していましたね↓



機械学習による流体シミュレーション近似を突き詰めていくと、やっぱりニューラルネットワークに行き着くということなのだろうか。

GitHubで公開されているDeep Fluidsのソースコードを見ると、TensorFlowベースで実装されているようだ↓
https://github.com/byungsook/deep-fluids

mantaflowという流体シミュレーションのフレームワークを使って訓練用のデータセットを用意するんですね↓

mantaflow

mantaflowは、コンピューターグラフィックスでの流体シミュレーションの研究を対象としたオープンソースのフレームワークです。
並列化されたC++のsolverコア、pythonシーン定義のインターフェイス、プラグインシステムにより、新しいアルゴリズムの迅速なプロトタイピング・テストが可能です。mantaflowには広範囲のNavier-Storkes solverの変種が含まれています。
mantaflowはとても用途が広く、ディープラーニングのフレームワーク(例:numpyを介してTensorFlow)と連携してインポート/エクスポートを可能な他、matlabのプラグインとしてスタンドアローンにコンパイルすることもできます。
最新版のダウンロードはこちら

Physics Forestsで著者の1人にDisney Research所属の人がいたように、Deep Fluidsの著者の中にはPixar所属の人がいますね。

CGで一昔前は物理ベースと言われていたジャンルが、演算コストが頭打ちになってだんだんナレッジ(知識)ベースへと移ってきているということだろうか。
大きな目で見ると、現象をデフォルメして軽い処理で近似していた時代に戻っているような気もする。

多次元パラメータを扱う関数の多いCG分野はディープラーニング(というかニューラルネットワーク)に向いてるのかもな。
畳み込みって、テクスチャマッピングやShading処理そのものだし、GPUとの相性も良い。
https://shiropen.com/seamless/deep-fluids

NVIDIAがGPGPUと言い始めたころ、その使用例は流体計算が多かった気がするけど、時代を経て手を変え品を変え、結局GPUで流体計算しているのも何だか不思議。

関連記事

CNN Explainer:畳み込みニューラルネットワーク可...

VCG Library:C++のポリゴン操作ライブラリ

Mayaでリアルな布の質感を作るチュートリアル

天体写真の3D動画

Texturing & Modeling A Pro...

Raspberry Pi

ニューラルネットワークと深層学習

MythTV:Linuxでテレビの視聴・録画ができるオープン...

Mean Stack開発の最初の一歩

素敵なパーティクル

Swark:コードからアーキテクチャ図を作成できるVSCod...

マジョーラ

ZBrushでアヴァン・ガメラを作ってみる

Konashiを買った

Point Cloud Utils:Pythonで3D点群・...

OpenMayaのPhongShaderクラス

リメイク版ロボコップスーツのメイキング

Transformer Explainer:テキスト生成モデ...

SVM (Support Vector Machine)

映画『ゴジラ-1.0』 メイキング情報まとめ

ZBrush 2018での作業環境を整える

Autodesk CompositeとAutodesk Ma...

iPhone欲しいなぁ

画像生成AI Stable Diffusionで遊ぶ

CGWORLD CHANNEL 第21回ニコ生配信は『シン・...

Python拡張モジュールのWindows用インストーラー配...

Iterator

ちょっと凝り過ぎなWebキャンペーン:全日本バーベイタム選手...

Python2とPython3

書籍『3次元コンピュータビジョン計算ハンドブック』を購入

DCGAN (Deep Convolutional GAN)...

頭蓋骨からの顔復元と進化過程の可視化

UnityでLight Shaftを表現する

Regard3D:オープンソースのStructure fro...

MFnMeshクラスのsplit関数

Unityで強化学習できる『Unity ML-Agents』

シン・ゴジラのファンアート

Faster R-CNN:ディープラーニングによる一般物体検...

OpenCV 3.1のsfmモジュールのビルド再び

ディープラーニング

trimesh:PythonでポリゴンMeshを扱うライブラ...

Amazon EC2ログイン用の秘密鍵を無くした場合の対処方...

コメント