SSD (Single Shot Multibox Detector):ディープラーニングによる一般物体検出手法

Faster R-CNN, YOLOに続きEnd-to-Endの手法のSSD (Single Shot Multibox Detector)をお勉強。


ディープラーニングによる一般物体検出アルゴリズムまとめ
これまで勉強したディープラーニングによる一般物体検出手法のアルゴリズム一覧。


またこちらの系譜図を引用↓

SSDFaster R-CNNと同程度の認識精度で、処理速度はYOLO v1よりも高速(59FPS)な手法。


スポンサーリンク

SSD (Single Shot Multibox Detector)

SSD (Single Shot Multibox Detector)ECCV 2016で発表されたSSD: Single Shot MultiBox Detectorで提案された手法。

SSDYOLOと同じように、領域スキャンのアプローチを使わずに入力画像からCNNで直接物体の位置を検出するOne-Stage(Shot)と呼ばれるアプローチの手法。
YOLOとの大きな違いは、YOLOがBounding Boxの出力を出力層だけで行っていたのに対し、SSDではCNNの複数の層から物体のBounding Boxを出力する点。

畳み込みニューラルネットワークの性質

畳み込みニューラルネットワークでは、入力画像から特徴を抽出する過程(畳み込みやプーリングなど)で特徴マップが徐々に小さくなっていく。そのため、出力層近くの特徴マップ上で1 pixelの要素であっても、もとの入力画像上では大きな領域に相当する。
この性質により、畳み込みニューラルネットワークを特徴抽出に利用して物体検出を行うと、小さな物体を検出できない場合がある。

各層での特徴マップを利用する

そこでSSDでは、畳み込みニューラルネットワークの途中の各層での大きいサイズの特徴マップも利用することで比較的小さな物体の検出も可能にしている。

SSDのネットワーク構造は、既存の畳み込みニューラルネットワーク(VGG-16)の構造をベースネットワークとして途中まで流用し、その次にさらに補助となる畳み込みネットワークを追加している。

学習の目標

SSDの教師データはYOLOと同じで、画像とそこに写っている各物体を示すBounding Boxとラベルとなる。
以下の図の例では、(a)のように1枚の画像に対して犬と猫のBounding Boxとラベルがground truthとして与えられている。

SSD

学習時には、(a)の実線の青い矩形(教師データ)と、(b)の点線の青い矩形(推定値)の位置・サイズが一致するように、かつ物体クラスが猫となるようにネットワークの重みを更新する。
同様に、(a)の実線の赤い矩形(教師データ)と、(c)の点線の赤い矩形(推定値)の位置・サイズを一致させ、犬と推定できるように学習する。

default box

SSDでもFaster R-CNNanchorのように、検出する物体の領域サイズ・アスペクト比のバリエーションに対応するためにdefault boxと呼ばれる複数の矩形パターンを定義する。SSDでは1つの入力画像に対してサイズの違う複数の特徴マップを扱うため、各サイズの特徴マップごとにdefault boxを定義することで物体の候補領域を効率的に離散化している。

例えば、以下の図のように異なるサイズ(8×8, 4×4)の特徴マップ上の各セルの位置について、(この例では)4パターンのdefault boxを適用している。

サイズがm × npチャンネルある特徴マップに対して、各セルの位置で3×3×pの小さな畳み込みカーネルを使う。そして、default boxごとに物体領域のBounding Boxの位置・サイズのオフセット値(loc:⊿(cx, cy, w, h))と、そのBounding Box内の物体がどのクラスに分類されるかの信頼度(conf:(c1,c2, …, cp))を推定する。(ここで言うオフセット値とは、default boxを基準としたBounding Boxの相対的な位置・サイズのこと)


スポンサーリンク

分類のクラス数をcdefault boxのパターン数をkとすると、特徴マップの各セル位置から得られる出力の数は合計(c + 4)個となる。(4は1つのBounding Boxあたりの出力値の数)
つまり、m × nサイズの特徴マップから得られる出力数は(c + 4)kmn個となる。

Multi-Scale Feature Maps

複数サイズの特徴マップについて順に見ていくと、

まず300×300×3の入力画像からVGG-16の畳み込み層の途中(Conv4_3)までを利用して38×38×512の特徴マップを抽出する。

参考:VGG-16のネットワーク構造↓

ここで抽出した38×38×512の特徴マップをネットワークの次の層の入力とし、VGG-16の残りの畳み込み層(Conv5_3)と、3×3×1024、1×1×1024の畳み込みで19×19×1024の特徴マップを抽出する↓

以降は同様に、この19×19×1024の特徴マップをさらに次の層の入力とし、10×10×512の特徴マップを抽出する↓

同様に、10×10×512の特徴マップを次の層の入力として5×5×256の特徴マップを抽出↓

5×5×256の特徴マップを入力として3×3×256の特徴マップを抽出↓

3×3×256の特徴マップを入力として1×1×256の特徴マップを抽出↓

このように、SSDでは6段階のサイズ違いの特徴マップを抽出し、各サイズの特徴マップのセルごとにdefault boxに対するBounding Boxのオフセットを推定する。そのため、1つの入力画像に対して分類クラスあたり8732個の物体領域候補が出力される。

そして、ここで出力される複数のBounding Boxを、YOLOと同様にNMS (Non-Maximum Suppression)によって選別して最終的な検出結果とする。

論文では、入力画像のサイズ違いで300×300と512×512の2パターンの実装・実験を行っており、それぞれの処理速度、認識精度は以下の通り。(NVIDIA TITAN X環境でのVOC2007テスト)

  • SSD300 (300×300):59FPS, 74.3%mAP
  • SSD512 (512×512):19FPS, 76.9%mAP

次はMask R-CNNと行きたいところだけど、その前にSegmentation系かな。


ディープラーニングによる一般物体検出アルゴリズムまとめ
これまで勉強したディープラーニングによる一般物体検出手法のアルゴリズム一覧。


スポンサーリンク

関連記事

疑似3D写真が撮れるiPhoneアプリ『Seene』がアップデートでついにフル3Dモデルが撮影できる...
Regard3D:オープンソースのStructure from Motionツール
PyTorch3D:3Dコンピュータービジョンライブラリ
AI英語教材アプリ『abceed』
Cartographer:オープンソースのSLAMライブラリ
iPadをハンディ3Dスキャナにするガジェット『iSense 3D Scanner』
OpenCV 3.3.0-RCでsfmモジュールをビルド
TeleSculptor:空撮動画からPhotogrammetryするツール
書籍『ゼロから作るDeep Learning』で自分なりに学ぶ
Windows10でPyTorchをインストールしてVSCodeで使う
represent
OpenCV 3.1のsfmモジュールを試す
NumSharp:C#で使えるNumPyライクな数値計算ライブラリ
CGのためのディープラーニング
3D復元技術の情報リンク集
CNN Explainer:畳み込みニューラルネットワーク可視化ツール
SSII 2014 デモンストレーションセッションのダイジェスト動画
ツールの補助で効率的に研究論文を読む
OpenGV:画像からカメラの3次元位置・姿勢を推定するライブラリ
YOLO (You Only Look Once):ディープラーニングによる一般物体検出手法
読みやすくて高速なディープラーニングのフレームワーク『Caffe』
OpenCV 3.3.0 contribのsfmモジュールのサンプルを動かしてみる
FreeMoCap Project:オープンソースのマーカーレスモーションキャプチャ
海外ドラマのChromaKey
手を動かしながら学ぶデータマイニング
DCGAN (Deep Convolutional GAN):畳み込みニューラルネットワークによる敵...
書籍『OpenCV 3 プログラミングブック』を購入
ManimML:機械学習の概念を視覚的に説明するためのライブラリ
OpenCVでカメラ画像から自己位置認識 (Visual Odometry)
OpenCVのバージョン3が正式リリースされたぞ
Paul Debevec
OpenCVの顔検出過程を可視化した動画
Kornia:微分可能なコンピュータービジョンライブラリ
OpenSfM:PythonのStructure from Motionライブラリ
BlenderProc:Blenderで機械学習用の画像データを生成するPythonツール
機械学習での「回帰」とは?
統計的な顔モデル
WordPressで数式を扱う
ディープラーニング
Faster R-CNN:ディープラーニングによる一般物体検出手法
全脳アーキテクチャ勉強会
UnityユーザーがUnreal Engineの使い方を学ぶには?

コメント